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modynamics simulations are carried out on idealised periodic arteriole-sized vessels, with red blood cell
‘tube’ hematocrit value¼24%. A further simulation of a single red blood cell serves for comparison
purposes.

The bulk motion of the red blood cells reproduces well-known effects, including the presence of a
cell-free layer and the apparent shear-thinning non-Newtonian rheology. The velocity flow field is
analysed in a Lagrangian reference frame, relative to any given red blood cell, hence removing the bulk
coaxial motion and highlighting instead the complex secondary flow patterns. An aggregate formation
becomes apparent, continuously rearranging and dynamic, brought about by the inter-cellular fluid
mechanics interactions and the deformability properties of the cells. The secondary flow field induces a
vacillating radial migration of the red blood cells. At different radial locations, the red blood cells express
different residence times, orientation and shape.

The shear stresses exerted by the flow on the vessel wall are influenced by the motion of red blood
cells, despite the presence of the cell-free layer. Spatial (and temporal) variations of wall shear stress
patters are observed, especially for the ‘circular’ vessel. The ‘star-shaped’ vessel bears considerable stress
at the protruding endothelial cell crests, where the stress vectors are coaxially aligned. The bulging
endothelial cells hence regularise the transmission of stresses on the vessel wall.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Whole blood is composed of plasma (�55% by volume) that is
mostly water, and holds in suspension several types of cells that
include red blood cells (RBCs, erythrocytes), white blood cells
(WBCs, leukocytes) and platelets (PLTs, thrombocytes), as well as
smaller particles such as microvesicles, amongst others. The pro-
portion of blood occupied by RBCs is referred to as the hematocrit
(HCT), and is normally �40–45% by volume, while WBCs occupy
�1/600 and PLTs occupy �1/800 of total cell volume (Popel and
Johnson, 2005). The RBCs tend to form aggregates at low shear
rates while disaggregation is determined mainly by mechanical
shear forces, giving rise to the observed non-Newtonian shear-
thinning rheology of blood. RBCs are also deformable and their
change in shape, alignment and distribution at different shear
cal Engineering, Bristol Uni-
1TR, UK.
rates and vessel calibre, all contribute to the non-Newtonian
rheology (Popel and Johnson, 2005; Lipowsky, 2005).

Individual particles suspended in a medium will preferentially
migrate towards the centre of the vessel due principally to velocity
gradients that generate a lift force (Saffman, 1965). Deformability
of particles has also been studied in relation to the migration
behaviour (Nix et al., 2014). In whole blood, the radial migration of
RBCs towards the centre of the vessel results in a cell-free layer
close to the vessel wall, the effect of which is more pronounced in
small vessels. This phenomenon leads to the well-known Fåhræus
and Fåhræus–Lindqvist effects, which describe respectively the
decrease in hematocrit in small vessels and the dependence of
apparent viscosity of blood on vessel size (Lipowsky, 2005; Pries
et al., 1992; Popel and Johnson, 2005). As a consequence of the
RBCs migration, WBCs and PLTs are effectively cast towards the
vessel walls.

At different vessel diameters and shear rates, the RBCs will
form stable aggregates or rearrange in a regulated manner due to
the inter-cellular fluid mechanics interactions (Freund and
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Orescanin, 2011; Pries et al., 1992). These configurations result in a
complex interplay between local viscosity, dissipation through
secondary flows and RBC deformability, influencing the cell-free
layer height and the apparent viscosity of blood. It has been sug-
gested in Omori et al. (2015) that the apparent viscosity and the
cell-free layer thickness may be primarily determined by macro-
scopic parameter, such as vessel diameter, flow rate, and hema-
tocrit, rather than by precise microscopic cellular mechanics, such
as the membrane mechanics and fluid motion around the cell.
Despite this, it is observed that high RBC concentration and inter-
cellular fluid mechanics interactions are responsible for the out-
ward radial migration of white blood cells (Takeishi et al., 2014)
and platelets, with evident physiological relevance. Experimental
studies have also outlined blood mass transport mechanisms
under both physiological and pathological conditions (Lima et al.,
2008). The detailed flow motion and cell mechanics therefore play
an important role in the physiological functions, and is studied in
the current work. Inter-cellular interactions other than those due
to the fluid mechanics may include electric potentials, biological
and biochemical processes, such as ligand–receptor bonds, how-
ever these will not be considered in the present study.

While most studies of computational haemodynamic micro-
circulation employ circular pipes as idealised models of the vessel
geometry, it is the aim of the present study to consider the effects
of more complex geometrical definitions. To this end, an endo-
thelial cell layer is explicitly modelled. Some works of 2-
dimensional flow of a single RBC over an idealised endothelial
surface layer in narrow vessels have reported interesting differ-
ences in the transmission of stresses with respect to flow in cir-
cular pipes (Secomb et al., 2001, 2002), with evident implications
on mechanotransduction signalling. In the present work, 3-
dimensional simulations in larger vessels and with a physiologi-
cal hematocrit level are carried out.

The paper is organised as follows. The case studies simulated
are detailed in Section 2, together with a brief outline of the
numerical method employed. Results and discussion of simula-
tions of red blood cell microcirculation are presented in Section 3,
while conclusions are given in Section 4. For completeness, an
Appendix is also provided with details of the numerical method.
2. Methods

Haemodynamic microcirculation is investigated by means of numerical simu-
lations, providing data at high spatial and temporal resolution. Three case studies
are chosen to investigate the flow field that arises due to the presence and inter-
action of RBCs, the resulting radial migration of the RBCs and the stresses that are
exerted on the vessel wall. These case studies are effected on geometric idealisa-
tions of the micro-vasculature, with increasing level of detail:

� Case 1: ‘dilated’ geometry (circular cross section)
diameter ¼22.2 μm, length ¼49.6 μm, number of RBCs ¼1, hematocrit ¼0.7%,
total simulation time ¼1.1 s

� Case 2: ‘dilated’ geometry (circular cross section)
diameter ¼22.2 μm, length ¼49.6 μm, number of RBCs ¼36, hematocrit ¼24%,
total simulation time ¼1.1 s

� Case 3: ‘constricted’ geometry (star-shaped cross section)
diameter ¼17–25 μm, length ¼49.6 μm, number of RBCs ¼36, hematocrit
¼24%, total simulation time ¼1.1 s

The vessels are periodic and the initial setup for Cases 2 and 3 are
shown in Fig. 1. All Cases have the same fluid volume content,
however Case 3 has an increased wall surface area due to the
configuration of the bulging endothelial cells, resulting in a
smaller hydraulic diameter.

As noted by Popel and Johnson (2005), as an arteriole is dilated its lumen is
approximately circular (Cases 1 and 2), while during arteriolar constriction the
lumen will be more irregular due to the bulging of endothelial cells and may result
in a ‘star-shaped’ cross section (Case 3). It is important to note that the ‘constricted’
and ‘dilated’ configurations do not correspond to the same vessel in the present
work. These two configurations are instead chosen for comparison purposes to
have the same fluid volume content.

The geometry of Case 3 includes the presence of endothelial cells which are
modelled as rigid and static, represented by an undulating vessel wall. The endo-
thelial cells are arranged in a structured manner and are described by trigono-
metric functions resulting in: cell length (coaxial direction) ¼24.8 μm, cell width
(azimuthal direction) ¼11.2 μm, cell height (radial direction) ¼4 μm. While
endothelial cell dimensions and shape are presented quite disparately in the lit-
erature, the results reported in Fukushima et al. (2003), Garipcan et al. (2011),
Ohashi and Sato (2005), and Yamaguchi et al. (2000) were used as inspiration to
define the geometry of Case 3.

The flow is driven by imposing a constant pressure drop Δp¼ 10 Pa, driving
the flow in the negative z-axis direction. An approximately constant flow rate is
attained, which is representative of the physiological state of microvascular flow
due to lowWomersley number (Popel and Johnson, 2005). Due to the RBCs motion,
interaction and aggregation behaviour, the flow resistance at any instant will
fluctuate, resulting in small oscillations in flow rate (or pressure, Freund and
Orescanin, 2011).

2.1. Mathematical models and numerical method

The Navier–Stokes equations, which describe the motion of fluids, represent
the mathematical model used to simulate haemodynamics microcirculation. Indi-
vidual red blood cells are simulated by coupling a structural model for the cell
membranes to the Navier–Stokes equations, through the addition of body force
terms. A mesh-free particle method is used to solve the equations in Lagrangian
reference frame, well suited to the complex motion and interaction of the sus-
pended cells in plasma. In this method, the domain is discretised by particles, each
representing a volume of fluid h30, where h0 is the particle spacing (in a Cartesian
layout). The mesh-free particle method employed is based on the Moving Particle
Semi-implicit (MPS) method (Koshizuka et al., 1998; Tsubota and Wada, 2010; Imai
et al., 2010; Alizadehrad et al., 2012; Gambaruto, 2015). Further details about the
numerical method are outlined in the Appendix and in Gambaruto (2015).

The final form of the incompressible Navier–Stokes equations to be solved is:

1
ρ
Dρ
Dt

þ∇ � u¼ 0

Du
Dt

¼ �∇p
ρ

þν∇2uþg ð1Þ

where D
Dt denotes the material derivative with respect to time, u is the velocity, p is

the pressure, g is the external body force per unit mass, and ρ and ν are respectively
the fluid density and the kinematic viscosity. The body force term g accounts for the
structural model for the cell membranes, in specific a spring network model is
adopted. The RBC membranes are described by a mesh of triangle elements, which
connectivity defines the spring network elements. The discretisation of the domain
into particles and the cell membrane by a spring network are shown in Fig. 2.

The body force term g consists in three force terms:

g¼ ftþfbþfr ð2Þ

where ft accounts for in-plane tension and compression forces of the springs, fb

accounts for out-of-plane bending forces, and fr is a repulsive force which ensures that
no particles cross the cell membranes and provides a simple lubrication force. Various
constitutive laws for springs have been used to model cell membranes (Fedosov et al.,
2010; Bessonov et al., 2014; Fedosov et al., 2010; Tsubota and Wada, 2010; Imai et al.,
2010). The spring elements discussed in Gambaruto (2015) and Bridson et al. (2003)
are adopted in the present work; shown in Fig. 2 while formulas are given in
Appendix A.4.

2.2. Red blood cell shape as an ellipsoidal best-fit

In order to study the RBC deformed shapes, a least-squares best-fit approx-
imation to an ellipsoid is used. This is computed using a proper orthogonal
decomposition (POD) of points discretising the cell membrane, resulting in the
gyration tensor (Alizadehrad et al., 2012; Pan et al., 2010):

G¼ 1
Nv

XNv

i ¼ 1

ðxi�xÞðxi�xÞT ð3Þ

where Nv is the number of vertices of the spring network mesh, and x ¼ 1
Nv

PNv
i ¼ 1 xi

is the centre of mass of the membrane vertices. The gyration tensor G is a 3�3
symmetric positive definite matrix, with real eigenvalues λ1Zλ2Zλ3 and corre-
sponding orthonormal eigenvectors ξ1; ξ2 ;ξ3, that are respectively related to the
length squared (consequently ‘energy’) and orientation of the ellipsoidal axes. For
example, RBCs at rest have λ1 ¼ λ24λ3, with ξ1 ;ξ2 defining the biconcave plane of
symmetry and ξ3 indicates the axis of rotational symmetry.

The stretch ratio as the ellipsoid major to minor axes length squared, hence
ðλ1=λ3Þ, and the angle between the minor axis and RBC direction of motion, hence



Fig. 1. Initial setup for Cases 2 and 3. The RBCs are aligned to have the minor axis of the biconcave shape aligned to the vessel coaxial direction (z-axis). The RBCs are
numbered incrementally in the coaxial direction to facilitate the analysis of their relative motion. The initial setup for Case 1 is identical to Case 2, save that only the first RBC
is modelled. A pressure drop Δp¼ 10 Pa is applied to drive the flow in the negative z-axis direction.
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〈u〉RBC � ξ3
� �

, will be used to analyse the shape and motion of the RBCs. Note �h i
indicates average value.

2.3. Simulation setup: parameters and coefficients

The material properties of the fluid (plasma and red blood cells) were set as
density ρ¼ 1000 kg m�3; dynamic viscosity μ¼0.001 Pa s. While representative,
these are simplifications since the cytoplasm viscosity is approximately five times
that of plasma (Fedosov et al., 2010).

The particle discretisation was set to h0¼0.4 μm following Imai et al. (2010),
while similar sizes have been used in Alizadehrad et al. (2012) (h0 ¼ 0:46 μm) and
Tsubota and Wada (2010) (h0 ¼ 0:26 μm). Each cell membrane was also discretised
at the same resolution by an unstructured mesh, resulting in � 1000 vertices and
� 2000 triangle faces, considered adequate following the convergence results in
Omori et al. (2011). The initial biconcave shape of RBCs was given as an analytic
function proposed in Fedosov et al. (2010). The response of the RBCs to static
stretch tests reported in Suresh et al. (2005) has been used as benchmarking of the
spring network model employed (Gambaruto, 2015).

Typically WBCs do not adhere to healthy arteriolar endothelium, and further-
more flowing WBCs (and PLTs) are not expected to affect the flow field significantly
due to their small concentration (Popel and Johnson, 2005). As such, neither WBCs
nor PLTs have been modelled in the present study.
3. Results and discussion

Statistics of the RBCs motion are presented in Tables 1 and 2
and are computed for three equispaced radial partitions of the
computational domains: ‘core’, ‘middle’ and ‘external’ regions,
defined by the maximum recorded radial location of any RBC
centre of mass during the simulations. The mean RBC velocity
magnitude, 〈juj 〉RBC , is substantially less for Case 3 compared to
Case 2 due to the increased wall surface area of the vessel.

The mean velocity magnitude of the RBCs and of the entire
domain (both plasma and RBCs), at time T¼1.1 s, are given in
Table 3, from which we note that the RBCs have a greater velocity
than the bulk flow, in agreement with the Fåhræus effect. Com-
paring Cases 1 and 2, we note that the higher hematocrit flow
gives rise to a larger apparent viscosity, and hence a reduced mean
flow rate.

In the following analysis and presentation of results, an inter-
polation of data from the scattered particles to a Cartesian mesh
was employed when necessary. This is performed when providing
cross sectional plots, streamline integration and time averaged
measures. In specific, a Shepard interpolation (Shepard, 1968) was
used: an inverse distance weighting where the weights are given
by d�p, where d is the Eucledian distance and p is the ‘power
parameter’. A large power parameter p¼3.5 was used, resulting in
a moderately smooth Voronoi tessellation of the field variables.

3.1. Dynamics of multiple RBCs

The profile of velocity magnitude at two cross sections at time
snapshot T¼1.1 s, as well as the time averaged velocity profile, are
shown in Fig. 3, in which the characteristic blunt profile of a
non-Newtonian shear-thinning rheology emerges. We note that
the two cross section profiles at the time snapshot T¼1.1 s differ



Fig. 2. Top left: cross section of example domain at the start of the simulation. The particles are arranged in a Cartesian fashion and the red blood cell membranes are then
inserted, subsequently removing abutting particles. The different particles colouring highlights the different classifications of the particle species: yellow¼ ‘ghost’,
green¼ ‘wall’, blue¼ ‘plasma’, azure¼ ‘cytoplasm’, red¼ ‘membrane’. Top right: detail of a single red blood cell membrane, showing the particle discretisation and the spring
network connectivity. Bottom left: pictorial representation of two triangle mesh elements of the membrane sharing a common edge, showing the spring elements resisting
both tension/compression and bending. Bottom right: pictorial representation of a triangle element of the membrane, showing the spring that generates the repulsive forces.
The red particles 1,2,3 make up the cell membrane, particle 4 is the abutting particle, while the yellow point (no. 5) defines the location of action of the repulsive force. (For
interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Table 1
Statistics of red blood cell radial migration: the ‘flux count’ is the average number of
times a RBC crosses into a different radial partition; the ‘residence time’ is the
percentage time a RBC resides in each radial partition. The standard deviation of
the ‘flux count’ provides information of the spread of the data. The statistics are
computed for the simulation period T¼0.1–1.1 s, excluding transients at the start of
the simulation (Tr0:1 s) related to the initial setup.

Radial partition Flux count Flux count Residence time
(mean) (standard deviation) (%)

Case 2
Core (0�2:9μm) 5.2 4.2 18
Middle (2:9�5:8 μm) 10.0 4.2 38
External (5:8�8:7 μm) 4.6 3.2 44
Case 3
Core (0�2:7μm) 3.5 4.0 18
Middle (2:7�5:4 μm) 8.3 4.3 35
External (5:4�8:1 μm) 4.6 3.8 46
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due to the heterogeneous distribution of the RBCs, as seen also in
Figs. 7 and 8. A coaxial view along the vessels, shown in Fig. 3,
highlights the presence of a cell-free layer near the vessel wall
while the RBCs are located in the central region of the vessel. The
apparent viscosity in the central region is greater than for the
cell-free layer, and subsequently the blunt velocity profile is
observed from the time averaged results. Good agreement in both
height of the cell-free layer and velocity profiles for Case 2 are
reported (Freund and Orescanin, 2011; Alizadehrad et al., 2012).

The time averaged statistics of RBC orientation and stretch,
based on the best-fit ellipsoid shape, are presented in Table 2 for
both Cases 2 and 3. The emerging trend is an increase in both
stretch ratio and angle subtended, with the radial location of the
RBC. These observations together with Figs. 7 and 8, indicate that
RBCs will flatten and expose a greater surface area to the lumen
wall with increased proximity, while in the core flow region the
shape is more complex (‘parachute’ or ‘slipper’ shaped) and the
orientation is more coaxial, lending a propensity for RBCs to
cluster and fit in the wake of the upstream RBCs. Similar trends in
orientation and deformed shapes of RBCs are reported in Aliza-
dehrad et al. (2012).

3.2. Dynamics of single RBC

For comparison purposes to better understand the motion and
interaction of multiple RBCs, the behaviour of a single RBC is
studied through Case 1, and the results are presented in Fig. 4. We
note that the RBC migrates from an initial displaced position to the
centreline of the vessel, and along this trajectory it undergoes
swinging motion (Abkarian et al., 2007; Meßlinger et al., 2009),
before attaining a stable parachute shape at the centreline. Note
that the radial location of the RBC after reaching the stable



Table 2
Left to right, mean values for: velocity magnitude for the RBCs; stretch ratio of
ellipsoid shape; angle between red blood cell mean velocity and ellipsoid minor
axis; mean resultant internal membrane force magnitude. The standard deviation
of the measures is given in the square brackets, to provide information of the
spread of the data. The statistics are computed for the simulation period T¼0.1–
1.1 s, excluding transients at the start of the simulation (Tr0:1 s) related to the
initial setup.

Radial partition jujh iRBC 〈λ1=λ3〉 uh iRBC � ξ3ð Þ
D E jgm j� �

(mm/s) (deg) (pN)

Case 2
Core (0�2:9μm) 4.3 [0.98] 2.3 [0.58] 65 [15.7] 2.6 [0.59]
Middle (2:9�5:8 μm) 4.2 [0.13] 2.8 [0.21] 74 [4.1] 2.6 [0.05]
External (5:8�8:7 μm) 2.9 [0.67] 3.2 [0.73] 75 [16.9] 2.4 [0.54]

Case 3
Core (0�2:7μm) 3.3 [0.76] 2.2 [0.53] 62 [16.6] 2.6 [0.60]
Middle (2:7�5:4 μm) 3.2 [0.17] 2.7 [0.23] 75 [3.5] 2.7 [0.06]
External (5:4�8:1 μm) 2.2 [0.44] 3.1 [0.62] 76 [14.6] 2.5 [0.47]

Table 3
Results for time snapshot T¼1.1 s. Left to right, mean values of velocity magnitude
for both the RBCs and the entire domain, and the pseudo-shear rate _γ . The mean
velocity of each RBC was found to be effectively coaxial. The analytic solution is

given by Poiseuille equation, such that uðrÞ ¼ R2Δp
4μL 1� r

R

� �2� �
, where R and L are

respectively the vessel radius and the length, μ is the fluid viscosity, and Δp is the
applied pressure drop. It should be noted that the radius R, used in the analytic
solution, has been adjusted due to the initial Cartesian discretisation of the domain
(Gambaruto, 2015).

Radial partition 〈juj 〉RBC 〈juj 〉entire domain _γ

(mm/s) (mm/s) (1/s)

Analytic solution – 3.3 144
Case 1 5.9 3.3 143
Case 2 3.7 2.6 115
Case 3 2.8 1.8 79
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configuration is marginally off-centre, due to limitations in the
numerical spatial discretisation.

Once the RBC has attained the parachute shape, mid-plane
cross sections of velocity magnitude and pressure are extracted, as
well as the streamlines of the flow field relative to the RBC. The
cross section of velocity magnitude shows a locally blunted profile
in the vicinity of the RBC, similar but not as emphatic as when
many RBCs are present, as in Case 2. The cross section of the
pressure (excluding the pressure drop imposed as boundary con-
dition) shows an increase in the flow resistance as the RBC passes,
hence higher pressure on the vessel wall at its location, and a high
pressure gradient across the RBC in order to drive it.

As detailed in Omori (2012, 2015), the capillary number Ca
represents the ratio of the viscous force to the elastic force and can
be used to classify the motion an RBC about its axes under a shear
flow. The capillary number is given by

Ca¼ μα _γ
Gs

ð4Þ

where μ is the plasma viscosity, α is the characteristic length
(radius of a sphere with the RBC volume), Gs is the membrane
shear modulus (Omori et al., 2011), _γ ¼ 〈juj 〉=D is the pseudo-
shear rate, and D is the effective vessel diameter. As noted also in
Freund and Orescanin (2011) and Meßlinger et al. (2009), the
viscosity ratio of cell cytoplasm to plasma can also affect the RBC
motion. For Case 1, Ca� 0:2 which is considered a low value, and
the swinging motion due to the shear flow occurs as the RBC
deforms and rotates about an oscillating axis. Snapshots of the
swinging motion are shown in Fig. 4, and their occurrence can be
clearly identified in the plot of stretch ratio. The time for the
swinging motion increases as the RBC migrates closer to the vessel
centreline, due to the smaller shear rate present. It is interesting to
note that the mean resultant internal membrane force magnitude,
〈jgj 〉 (Eq. (2)), increases steadily during the swinging motion,
rapidly falling once the RBC has completed a swing and recovers to
a more discoid shape. In the final steady parachute configuration
the RBC assumes at the centre of the vessel, the mean resultant
internal membrane force is approximately of the same magnitude
as the peaks during the swinging motion. The parachute config-
uration hence exhibits a higher mean resultant membrane force
than a more discoid shape.

3.3. Radial migration of RBCs

As noted above for all Cases studied, the RBCs migrate to the
central region of the vessel and form a cell-free layer at the vessel
wall. While the simulation Case 1 for the single red blood cell
shows that a stable configuration is attained, in Cases 2 and 3 the
RBCs continuously alter in shape and relative positions. The radial
location of each RBC centre of mass is tracked during the simu-
lations, and some mean measures are reported in Table 1, speci-
fically the ‘flux count’ and the ‘residence time’. The ‘residence
time’ describes the percentage of time that the RBCs spend in each
of the radial partitions. The ‘flux count’ is the average number of
times a RBC cross over into a different radial partition. It should be
noted that the ‘middle’ region interfaces with both ‘core’ and
‘external’ regions, and we would expect a flux count approxi-
mately twice as large in comparison.

The results for Cases 2 and 3 are similar, with the flux count
�4–5 for each radial partition. For both Cases, the greatest resi-
dence time is attributed to the ‘external’ region and least in the
‘core’ region. From Table 2 we also note that in the ‘external’
region the mean RBC velocity is less than the ‘core’ and ‘middle’
regions, influencing the higher residence times.

The standard deviation of all measures reported in Table 2 is
smallest for the ‘middle’ radial partition. This result indicates that
the RBC characteristics tend to be more homogeneous, and con-
sequently that this radial partition serves as a traversing region for
RBCs migration, which occurs with consistent attributes and
characteristics.

The measures of flux count and residence time, together with
the orientation and stretch ratio of the RBCs discussed above,
highlight the mechanisms that promote both mixing and exchange
processes combined. In Fig. 5 the radial location of a selection of
RBCs is plotted for both Cases 2 and 3 to show that various tra-
jectories may be observed, including RBCs that reside solely in one
region or alternatively traverse the vessel either partially or
entirely. For both Cases 2 and 3, RBCs could be identified that had
similar radial migration behaviour, though the RBC numbering
itself was not the same to indicate that the dynamics was not
dependent on the initial setup of the simulations. Small oscillatory
motion is observed along each trajectory, highlighting the complex
flow field both generated and traversed by the RBCs. From these
plots the transient behaviour due to the initial simulation setup is
identifiable in the time window T¼0–0.1 s, and data during this
period is discarded in all analyses.

3.4. Secondary flow field

The simulation of Case 1 resulted in the migration of the single
RBC to a stable configuration at the centre of the vessel, after an
initial phase of swinging motion. On the other hand, from the
simulations of Cases 2 and 3 we observed that the RBCs cluster in
the central region of the vessel and form an aggregate. This
aggregate differs from the rouleaux structures that are obtained at
lower shear rates, in that it is a continual dynamic interplay



Fig. 3. Results for the time snapshot T¼1.1 s and time averaged velocity profiles. Top: cross sections of velocity (mm/s), extracted at location 25% and 75% of the vessel
lengths, and the differences in these sections. The flow direction is right to left. Bottom left: longitudinal views along the vessels, highlighting the cell-free layer formed by the
RBC migration to the centre of the vessel. Bottom centre: time averaged velocity cross section profiles. Bottom right: line plot of normalised velocity as a function of radial
position. Note that for Case 3, the radial position goes from vessel centre to the top of the endothelial cells (crest), and alternately from centre to the bottom of the cells
(trough).
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between the cells, rearranging ceaselessly due to their deform-
ability property and the complex flow field.

The fluid velocity field can be considered as a linear super-
position of a dominant (coaxial) and secondary (relative) flow
field, hence:

ufluid ¼ ucoaxialþurelative ð5Þ

Taking a Lagrangian reference frame relative to an individual RBC,
with the coaxial velocity given by its mean speed, then the sec-
ondary flows relative to it are given by urelative ¼ ufluid� 〈ucoaxial〉RBC .
Streamlines of the true and relative flow fields are shown in Fig. 6,
for Case 3 at time T¼0.74 s, for three RBCs that have distinct radial
migration behaviours. While the streamlines in the true flow field
will generally point to the direction of motion, in the Lagrangian
frame, the streamlines may change direction depending if the RBC
is moving faster or slower along the vessel than the surrounding



Fig. 4. Results for the simulation of Case 1. Top left (the flow direction is right to left): velocity magnitude and pressure are for the snapshot time T¼0.6 s, in the mid-plane
cross section. The pressure shown is computed in Step.6 of the numerical scheme (see Appendix A.2), hence does not include the pressure drop boundary condition to drive
the flow (Δp¼ 10 Pa). Bottom left (the flow direction is right to left): the streamlines of the flow field relative to the RBC are for the snapshot time T¼0.6 s, from which a
vortex ring in the wake of the cell is visible. Top right: the RBC centre of mass history shows correspondence between the radial location, stretch ratio and mean resultant
internal membrane forces. Equispaced time intervals are marked on the plot during the time window T¼0.09–0.17 s, corresponding to the RBC swinging motion shown (at
the bottom right).

Fig. 5. History of radial location of the different RBCs during the simulation. Simulation transients related to the initial setup are visible during Tr0:1 s. RBCs with similar
radial migration behaviour can be identified for both Cases 2 and 3 (see colour scheme), however the RBC identification numbering is different to indicate that the dynamics
are not dependent on the simulation setup. RBCs are seen to: reside only at a large radial location (red), reside only at a small radial location (black), entirely traverse the
admissible range of radial location (blue), traverse a partial distance of the admissible range (green). (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this paper.)
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Fig. 6. Results for Case 3 at the time snapshot T¼0.74 s. The results are colour coded to maintain correspondence of the RBCs. Top left: plot of radial location history for the
three RBCs, showing the time instance chosen, coinciding with RBC 2 migrating radially towards the centre of the vessel. Top right: lateral and longitudinal views of the
vessels. Bottom: streamlines of relative and true velocity flow field, in two perpendicular views. The RBC motion is right to left, as are the streamlines of the true velocity. The
streamlines of relative velocity highlight a complex secondary flow field, due to the inter-cellular fluid mechanics interactions and cell deformability properties.
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fluid. In specific if the streamlines in the relative flow field have
direction upstream-to-downstream (hence left to right in Fig. 6),
the RBC is moving faster coaxially than the surrounding fluid, and
conversely if the streamline direction is reversed. For all the RBCs
shown in Fig. 6, we note that the RBCs are in general travelling
faster than their surroundings, with exception of RBC 3 which is
located at a large radial location and is travelling slower than the
core flow but faster than the near-wall flow.

The streamlines of the relative flow field furthermore expose
vortex structures and regions of recirculating flow, which are
evidence of the inter-cellular fluid mechanics interplay that result
in RBC clustering and dynamic aggregate formation. For RBC 2,
which is migrating towards the core region at time T¼0.74 s, the
relative flow field is generally towards the vessel centre, with a
number of vortex structures manifesting in the core flow region
while the external region is relatively coaxial. For RBC 3, which
maintains a radial location in the external region of the vessel, the
relative flow field suggests a rotational, possibly tank-treading
motion of the cell. For RBC 12, which maintains a radial location in
the core region of the vessel, the shape is such that a large trailing
vortex is generated while the tip of the cell is subjected to the
wake of a preceding RBC. The streamlines that describe these
dynamics in fact traverse other RBCs not shown in Fig. 6, and the
streamlines of the relative flow therefore also describe the relative
motion of the suspended cells and not only the plasma.

For comparison purposes, the streamlines of the relative flow
field computed for Case 1 are shown in Fig. 4. A vortex ring
structure in the wake of the RBC is present, which due to the
periodic boundary conditions loops and extends to the front of the
RBC again. It can be foreseen that additional RBCs lying in this
wake would be affected and result in inter-cellular fluid mechanics
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interactions that define the individual and compound motion of
the suspended cells.

3.5. Wall shear stress

The wall shear stress (WSS) is computed as:

τw ¼ τ � n!
� �

� τ � n!
� �

� n!
� �

n! ð6Þ

where n! is the unit outward normal to the wall surface (com-
puted using a least-squares approximation), and τ ¼ μ ∇uþ∇uT

� �
is the extra stress assuming a Newtonian fluid. The velocity gra-
dient tensor has been computed using the discrete gradient
operator detailed in Appendix A.3.

The WSS acts tangential to the plane of the wall, in the opposite
direction to the flow, and is the viscous traction force exerted by
the flow on the wall. By integrating the WSS vector field on the
vessel wall, we obtain the surface shear lines (SSL), which indicate
the direction of the flow velocity vector in the limit as the wall is
approached. Both WSS and SSL are shown in Fig. 7 for the time
snapshot T¼1.1 s. For Case 3, the WSS magnitude is observed to be
larger at the protruding crests of the endothelial cells, and sub-
stantially lower at the bottom of the cells, in the troughs along
Fig. 7. Wall shear stress (WSS) at the time snapshot T¼1.1 s and time averaged solution
surface, termed the surface shear lines (SSL). Top left: RBCs and SSL, where the flow di
unwrapping the vessel (hence the x-axis here represents the azimuthal direction), whe
disturbed by the RBCs and the bulging endothelial cells. Bottom left: time averaged soluti
time averaged WSS distribution on the endothelial cell surfaces for Case 3 as a function
neighbouring cell boundaries. The crests of the cells are subjected
to higher flow velocity gradients (see Fig. 3), and greater interac-
tions with the RBCs. The SSL are seen to meander around the
endothelial cells, while at the crests of the endothelial cells the SSL
are aligned coaxially. For Case 2, the pattern of WSS magnitude is
to a greater extent dictated by the interaction of RBCs that leave a
footprint of stresses exerted on the vessel wall (Freund and Ver-
mot, 2014; Gambaruto, 2015), and the SSL largely run coaxially.
The SSL are seen to locally deviate from the coaxial direction as the
flow field is disturbed by the motion of the RBCs. The WSS and SSL
have a greater degree of spatial (and subsequently also temporal)
variation in both magnitude and direction when no endothelial
cells are modelled.

The mean WSS magnitude at the time snapshot T¼1.1 s and the
time average results are respectively: 〈WSS〉T ¼ 1:1 s ¼ 1:22 Pa,
〈WSS〉〈T〉 ¼ 1:09 Pa for Case 2 and 〈WSS〉T ¼ 1:1 s ¼ 1:86 Pa, 〈WSS〉〈T〉 ¼
1:82 Pa for Case 3. In Fig. 7, the time averaged WSS and SSL for
Case 3 is also presented, and we report that for Case 2 a uniform
time averaged WSS is obtained with the SSL running coaxially. On
comparing the time averaged results to those of the time snapshot,
it is evident that RBCs and the resulting complex flow field affect
the stress distribution that the fluid exerts on the vessel wall,
. The integral of the WSS on the vessel wall defines the traction paths on the vessel
rection is right to left. Top right: plot of WSS magnitude [Pa] and SSL, obtained by
re the flow direction is top to bottom. The WSS magnitude and SSL are seen to be
on for Case 3, showing a regular pattern of WSS and SSL. Bottom right: histogram of
of the radial distance, from cell crest to trough.
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especially for Case 2. The spatial and temporal distribution of the
forces that the flow exerts on the vessel wall, related to the motion
of the suspended cells in plasma, may influence the mechan-
otransduction signalling processes. The time averaged WSS dis-
tribution on the endothelial cell surfaces for Case 3 as a function of
the radial distance, from cell crests to troughs, is plotted in Fig. 7.
The histogram shows an inverse relationship, indicating that the
endothelial cell crests bear the brunt of the stresses, shielding the
bottom of the cells.
3.6. Membrane forces

The magnitude of resultant internal membrane forces per unit
mass, jgj (Eq. (2)), is an indicator of the extent the local fluid
mechanics is affected (or perturbed) by the cell membrane. In fact
jgj is the external body force acting on the Navier–Stokes equa-
tions (Eq. (1)), being the instrument to express and simulate the
RBC membranes in the numerical method. Let us write the
resultant internal membrane forces as gm ¼ g �M, where
M¼ ρ � h30 ¼ 103 � ð0:4� 10�6Þ3 ¼ 6:4� 10�17 kg is the mass of the
particles that discretise the domain, considering the spatial reso-
lution and fluid density used in the present study. The magnitude
of the forces, jgm j , are shown in Fig. 8 for time T¼1.1 s, and can be
seen to be greatly inferior to the static stretch used tests to char-
acterise the RBC membrane stiffness properties in Suresh et al.
(2005), Fedosov et al. (2010), Imai et al. (2010), and Gambaruto
(2015).
Fig. 8. Resultant internal membrane force magnitude [pN], at the time snapshot
T¼1.1 s. The flow direction is right to left. These are the non-equilibrium forces,
gm ¼ g �M, computed in Eq. (2) that act on the fluid in Eq. (1), multiplied by the
mass of the particles M¼ 6:4� 10�17 kg. It is evident that the regions of higher
curvature contribute to the largest values. The orientation of the RBCs is such as to
expose a larger surface area with proximity to the vessel wall, and a more tight knit
cluster in the central region of the vessel.
The greatest resultant forces arise at regions of higher curva-
ture, and for RBCs located closer to the vessel walls these larger
bending forces appear along the rim of the discoid shape that the
RBCs assume, especially at the leading and trailing edges. For RBCs
in the central region of the vessel, the dynamic aggregate forma-
tions consist in RBC deformed configurations such as ‘parachute’
or ‘slipper’ shapes, and the higher curvature regions again appear
at the leading and trailing edges. The average forces during the
simulation period are reported in Table 2, from which rather
uniform values emerge, with marginally greater values for Case
3 as the vessel wall is approached. The ‘middle’ region reveals a
markedly smaller standard deviation and hence more uniform
distribution. In fact from Table 2 and Fig. 4, the ‘middle’ radial
region consistently reports the smallest standard deviation of all
the measure, suggesting that this region may serve as a transition
domain in the radial migration, during which the shapes of the
RBCs assume similar configurations, unlike the ‘core’ and ‘external’
regions.
4. Conclusion

The dynamics of red blood cells (RBCs) are studied for three
simulation cases of idealised periodic arteriole-sized vessels of
increasing modelling complexity. The cases studied may be treated
as a comparison between dilated and constricted vessels, in which
endothelial cells are respectively modelled as flat or bulging. A
hematocrit count in the physiological range (HCT¼24%) was
considered, and a constant pressure drop was used to drive the
flow for all Cases. The well-known Fåhræus and Fåhræus–Lindq-
vist effects are reproduced, showing the migration of RBCs to the
central region of the vessel while forming a cell-free layer near the
vessel wall.

The dynamics of a single cell with an initial peripheral location
results in radial migration with a swinging motion until reaching
the vessel centre, where a stable parachute shape is maintained.
For cases with physiological HCT, RBC dynamics reveals phenom-
ena that include ceaseless radial migration, vacillating between
the core and wall of the vessel. At different radial locations, the
shape, stretch ratio and orientation of RBCs vary preferentially. In
the ‘middle’ radial partition a small standard deviation of the
measures is recorded, indicating that in this region of the vessel
lumen the RBCs behave in a similar fashion.

The sophisticated, unsteady dynamics of the RBCs is brought on
by the complex flow field, which is in turn induced by the inter-
cellular fluid mechanics interaction as well as the RBC deform-
ability property. By decomposing the velocity flow field into a
dominant coaxial velocity and a secondary velocity field, relative
to an individual RBC (a Lagrangian reference frame, see Eq. (5)),
the complex flow field clearly emerges. For example, in the
simulation of Case 1 for a single RBC, a trailing vortex ring is
generated behind the stable parachute shape configuration. Other
more complex flow field examples with physiological hematocrit
values are also reported.

In the central region of the vessel where RBCs cluster, the
dynamic interplay between the cells can be interpreted as a con-
tinual rearrangement to fit in the downstream wake of the pre-
ceding RBCs. This motion effectively acquires an aggregate beha-
viour, affecting the local apparent viscosity and momentum dis-
sipation, that is adaptive and dependent on both the flow field's
secondary structures and RBC deformability.

The motion of RBCs is seen to affect the distribution of wall
shear stress exerted on the vessel walls, both in magnitude and
direction. When bulging endothelial cells are modelled (Case 3),
the protruding crests of the endothelial cells are seen to bear
higher shear stresses, while the interstitial regions are spared from
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high stresses. This results in greater uniformity in spatial (and
temporal) stress patterns that the flow effectively exerts on the
vessel wall, as compared to the smooth circular vessel simulation
(Case 2).

The study remains a preliminary work, especially in that
idealised geometries were utilised and the same pressure drop
was imposed to drive the flow. Future work should include the
presence of the glycocalyx, which has been estimated to affect the
stresses exerted on the vessel wall (Secomb, 2001, 2002). The
inclusion of white blood cells and platelets, together with phe-
nomena of tethering and adhesion, should also be considered in
future work since, combined, these will affect the inter-cellular
interactions and subsequently also the flow field. Moreover, visc-
osity differences between plasma and cytoplasm should be con-
sidered, and greater experimental data is necessary to improve
parameter and modelling choices.
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Appendix A. Numerical discretisation and scheme

A.1. Moving Particle Semi-implicit (MPS) method: a mesh-free par-
ticle-based method

The mesh-free particle-based method employed to solve the
incompressible, Navier–Stokes equations is based on the Moving
Particle Semi-implicit (MPS) method (Gambaruto, 2015). There-
fore, let us consider a scattered set of points, where locally the
central particle is located at xi and M neighbouring particles have
locations xj and lie within the compact support re. The distance
between these particles is given by r ¼ jxj−xi j . In mesh-free
methods, function approximation relies on the information avail-
able in a local neighbourhood and is commonly formulated as a
weighted radial interaction. In the classical MPS method the
weight function is given by:

wðrÞ ¼
re
r
−1 0orore

0 reor

8<
: ð7Þ

where re ¼ 2:1h0 is commonly chosen.
From these considerations we can smoothly interpolate the

value of an arbitrary scalar ϕ at an arbitrary location i by:

ϕi ¼
1PM

j≠i wðrÞ
XM
j≠i

wðrÞ ϕj
� � ð8Þ

By setting ϕ ¼ 1, the ‘particle number density’ at a particle i is
given by:

ni ¼
XM
j≠i

wðrÞ ð9Þ
Since particles represent lumped volumes of fluid, the density is
proportional to the particle number, ρi∝ni. For incompressible
flows this particle number density should be constant n0.

A.2. Outline of scheme

The steps involved to compute the solution at the successive
time step can be concisely detailed as follows (Gambaruto, 2015):
Step 1. pressure field for pressure boundary conditions (implicit
step),

∇2pn ¼ 0; with BCs : Δp for periodic sections; ∇pUn
→

¼ 0 at walls;

Step 2. body forces (pressure gradient, spring forces),

fnp ¼ −1
ρ
∇pn; gn ¼ sum of spring forces;

Step 3. solve for the viscous forces and increment velocity
(implicit step),

un ¼ un þ Δtðgn þ fnpÞ þ Δtðν∇2unÞ; with BCs : ui ¼ 0 at walls;

Step 4. check CFL condition is satisfied, if not go to Step 3 with
smaller Δt;
Step 5. move particles,

xn ¼ xn þ Δt un;

Step 6. pressure Poisson equation to satisfy incompressibility
(implicit step),

∇2pnþ1 ¼ −ρ
Δt2

ðnn−n0Þ
n0 ; with BCs : ∇pUn

→ ¼ 0 at walls;

Step 7. update the velocity,

unþ1 ¼ un þ unn ¼ un−
Δt
ρ
∇pnþ1;

Step 8. move particles,

xnþ1 ¼ xn þ Δt unþ1:

A.3. Discrete differential operators

In order to solve for the Navier–Stokes equations using the
above scheme, the derivative terms that appear need to be sub-
stituted by discrete differential operators. In the following, let us
consider an arbitrary scalar quantity ϕ given at each particle in d
spatial dimensions.

The discrete gradient operator is computed as a weighted
average over neighbouring particles as:

〈∇ϕ〉i ¼
d
ni

XM
j≠i

wðrÞðϕj−ϕiÞðxj−xiÞ
jxj−xi j 2

ð10Þ

The discrete Laplacian operator is derived from the solution of
the diffusion equation, and is given by:

〈∇2ϕ〉i ¼
2d
λni

XM
j≠i

wðrÞðϕj−ϕiÞ; where λ ¼
PM

j≠i wðrÞ r2� �
PM

j≠i wðrÞ
ð11Þ
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A.4. Membrane dynamics modelled by a spring network

The spring network discretisation for the cell membranes is
composed of three spring types, as noted in Eq. (2). These are:
tension/compression springs ðftÞ, bending springs ðfbÞ, and repul-
sive springs ðfrÞ, which are detailed briefly below following the
notation in Fig. 2.

The forces for tension/compression springs act to resist stresses
in the plane of the triangle elements:

fti ¼ κt
ðjxij j−L0Þ

L0

xij

jxij j
ð12Þ

where κt is the spring stiffness, xij ¼ xj−xi is the vector connecting
particles i and j, and L0 is the spring rest length.

Bending springs resist membrane curvature and act orthogonal
to the triangle elements (Bridson et al., 2003):

fbj ¼ jEj 2
jN1 j þ jN2 j

� 	
ðθ−θ0Þ κb ηj; for j ¼ 1;…;4 ð13Þ

with

η1 ¼ jEj N1

jN1 j 2
; η3 ¼ ðx1−x4ÞUE

jEj U
N1

jN1 j 2
þ ðx2−x4ÞUE

jEj U
N2

jN2 j 2

η2 ¼ jEj N2

jN2 j 2
; η4 ¼ −

ðx1−x3ÞUE
jEj U

N1

jN1 j 2
−
ðx2−x3ÞUE

jEj U
N2

jN2 j 2
ð14Þ

where θ0 is the rest angle, N1 ¼ ðx1−x3Þ � ðx1−x4Þ,
N2 ¼ ðx2−x4Þ � ðx2−x3Þ, E ¼ ðx4−x3Þ.

The repulsive forces act on any abutting particle to the mem-
brane:

frj ¼ −κr n̂
de
x4;5

−1
� 	

Aj

A
if 0ox4;5ode; for j ¼ 1;2;3

fr4 ¼ −
X3
j¼1

frj ð15Þ

where x4;5 ¼ jx4−x5 j , n̂ is the membrane surface unit normal, and
de is the radius of compact support for the repulsive forces. If x4;5
≥de then fr ¼ 0.

The spring coefficients were set to κt ¼ 8� 104 m s−2,
κb ¼ 2� 10−2 m2 s−2, and κr ¼ 4� 104 m s−2, with L0 ¼ h0, θ0 ¼ 0
and de ¼ h0, following benchmarked results for static stretch tests
in Gambaruto (2015).
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